A Survey on Classification Algorithm for Real Time Data Streams using Ensembled Approach
نویسندگان
چکیده
-Classification and analysis of data streams are the most promising fields of research and development in Data stream mining. Ensemble based classification approach is one the most challenging flavor of developing an efficient classifier due to large number available base classifiers and increase in the computational time required for training and classification. This research emphasizes on developing an efficient ensemble based classification algorithm for data stream.
منابع مشابه
Detecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملMining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملارائه روشی پویا جهت پاسخ به پرسوجوهای پیوسته تجمّعی اقتضایی
Data Streams are infinite, fast, time-stamp data elements which are received explosively. Generally, these elements need to be processed in an online, real-time way. So, algorithms to process data streams and answer queries on these streams are mostly one-pass. The execution of such algorithms has some challenges such as memory limitation, scheduling, and accuracy of answers. They will be more ...
متن کاملA fast incremental extreme learning machine algorithm for data streams classification
Data streams classification is an important approach to get useful knowledge from massive and dynamic data. Because of concept drift, traditional data mining techniques cannot be directly applied in data streams environment. Extreme learning machine (ELM) is a single hidden layer feedforward neural network (SLFN), comparing with the traditional neural network (e.g. BP network), ELM has a faster...
متن کامل